The Capital Asset Pricing Model

Lecture Outline

- Optimal Portfolio Choice
- The CAPM
- The Capital Market Line and Security Market Line
- Systematic Risk and Beta

The Expected Return of a Portfolio

- Portfolio Weights
- The fraction of the total investment in the portfolio held in each individual investment in the portfolio
- The portfolio weights must add up to 1.00 or 100%.

$$
x_{\mathrm{i}}=\frac{\text { Value of investment } i}{\text { Total value of portfolio }}
$$

- Then the return on the portfolio, R_{p}, is the weighted average of the returns on the investments in the portfolio, where the weights correspond to portfolio weights.

$$
R_{P}=x_{1} R_{1}+x_{2} R_{2}+\cdots+x_{n} R_{n}=\sum_{i} x_{i} R_{i}
$$

- The expected return of a portfolio is the weighted average of the expected returns of the investments within it.

$$
E\left[R_{P}\right]=E\left[\sum_{i} x_{i} R_{i}\right]=\sum_{i} E\left[x_{i} R_{i}\right]=\sum_{i} x_{i} E\left[R_{i}\right]
$$

- Problem

- Assume your portfolio consists of $\$ 25,000$ of Intel stock and $\$ 35,000$ of ATP 0il and Gas.
- Your expected return is 18\% for Intel and 25% for ATP 0il and Gas.
- What is the expected return for your portfolio?

- Solution

- Total Portfolio $=\$ 25,000+35,000=$ \$60,000
- Portfolio Weights
- Intel: $\$ 25,000 \div \$ 60,000=.4167$
- ATP: $\$ 35,000 \div \$ 60,000=.5833$
- Expected Return
$E[R]=(.4167)(.18)+(.5833)(.25)$
- $E[R]=0.075006+0.145825=0.220885=22.1 \%$

The Volatility of a Two-Stock Portfolio

Combining Risks

Table: Returns for Three Stocks, and Portfolios of Pairs of Stocks

	Stock Returns				Portfolio Returns	
Year	North Air	West Air	Tex Oil		$\mathbf{1 / 2 R}_{\boldsymbol{N}}+\mathbf{1 / 2}_{\boldsymbol{W}}$	$\mathbf{1 / 2 R}_{\boldsymbol{W}}+\mathbf{1 / 2} \boldsymbol{R}_{\boldsymbol{T}}$
2003	21%	9%	-2%		15.0%	3.5%
2004	30%	21%	-5%		25.5%	8.0%
2005	7%	7%	9%		7.0%	8.0%
2006	-5%	-2%	21%		-3.5%	9.5%
2007	-2%	-5%	30%		-3.5%	12.5%
2008	9%	30%	7%		19.5%	18.5%
Average Return	10.0%	10.0%	10.0%		10.0%	10.0%
Volatility	13.4%	13.4%	13.4%		12.1%	5.1%

- Combining Risks
- By combining stocks into a portfolio, we reduce risk through diversification.
- The amount of risk that is eliminated in a portfolio depends on the degree to which the stocks face common risks and their prices move together.
- To find the risk of a portfolio, one must know the degree to which the stocks' returns move together.

Determining Covariance and Correlation

- Covariance
- The expected product of the deviations of two returns from their means
- Covariance between Returns R_{i} and R_{j}

$$
\operatorname{Cov}\left(R_{i}, R_{j}\right)=E\left[\left(R_{i}-E\left[R_{i}\right]\right)\left(R_{j}-E\left[R_{j}\right]\right)\right]
$$

- Estimate of the Covariance from Historical Data

$$
\operatorname{Cov}\left(R_{i}, R_{j}\right)=\frac{1}{T-1} \sum_{t}\left(R_{i, t}-\bar{R}_{i}\right)\left(R_{j, t}-\bar{R}_{j}\right)
$$

- If the covariance is positive, the two returns tend to move together.
- If the covariance is negative, the two returns tend to move in opposite directions.
- Correlation
- A measure of the common risk shared by stocks that does not depend on their volatility

$$
\operatorname{Corr}\left(R_{i}, R_{j}\right)=\frac{\operatorname{Cov}\left(R_{i}, R_{j}\right)}{\operatorname{SD}\left(R_{i}\right) S D\left(R_{j}\right)}
$$

- The correlation between two stocks will always be between -I and +l.

- Computing the Covariance and Correlation Between Pairs of Stocks

Year	Deviation from Mean			North Air and West Air$\left(\boldsymbol{R}_{N}-\bar{R}_{N}\right)\left(R_{w}-\bar{R}_{w}\right)$	West Air and Tex Oil$\left(\boldsymbol{R}_{W}-\bar{R}_{W}\right)\left(\boldsymbol{R}_{T}-\bar{R}_{T}\right)$
	$\left(\boldsymbol{R}_{N}-\overline{\boldsymbol{R}}_{N}\right)$	$\left(\boldsymbol{R}_{W}-\overline{\boldsymbol{R}}_{W}\right)$	$\left(\boldsymbol{R}_{T}-\overline{\boldsymbol{R}}_{T}\right)$		
2003	11\%	-1\%	-12\%	-0.0011	0.0012
2004	20\%	11\%	-15\%	0.0220	-0.0165
2005	-3\%	-3\%	-1\%	0.0009	0.0003
2006	-15\%	-12\%	11\%	0.0180	-0.0132
2007	-12\%	-15\%	20\%	0.0180	-0.0300
2008	-1\%	20\%	-3\%	-0.0020	-0.0060
$\text { Sum }=\sum_{t}\left(R_{i, t}-\bar{R}_{j}\right)\left(R_{j, t}-\bar{R}_{j}\right)=$				0.0558	-0.0642
Covariance:			$\frac{1}{T-1}$ Sum $=$	0.0112	-0.0128
Correlation:		$\operatorname{Corr}\left(R_{i}, R\right.$	$\frac{\operatorname{Cov}\left(R_{i}, R_{j}\right)}{\left(R_{i}\right) S D\left(R_{j}\right)}=$	0.624	-0.713

Computing a Portfolio's Variance and Volatility

- For a two security portfolio:

$$
\begin{aligned}
\operatorname{Var}\left(R_{P}\right) & =\operatorname{Cov}\left(R_{P}, R_{P}\right) \\
& =\operatorname{Cov}\left(x_{1} R_{1}+x_{2} R_{2}, x_{1} R_{1}+x_{2} R_{2}\right) \\
& =x_{1} x_{1} \operatorname{Cov}\left(R_{1}, R_{1}\right)+x_{1} x_{2} \operatorname{Cov}\left(R_{1}, R_{2}\right)+x_{2} x_{1} \operatorname{Cov}\left(R_{2}, R_{1}\right)+x_{2} x_{2} \operatorname{Cov}\left(R_{2}, R_{2}\right)
\end{aligned}
$$

- The Variance of a Two-Stock Portfolio
$\operatorname{Var}\left(R_{P}\right)=x_{1}^{2} \operatorname{Var}\left(R_{1}\right)+x_{2}^{2} \operatorname{Var}\left(R_{2}\right)+2 x_{1} x_{2} \operatorname{Cov}\left(R_{1}, R_{2}\right)$

- Problem

- Assume your portfolio consists of $\$ 25,000$ of Intel stock and $\$ 35,000$ of ATP 0il and Gas.
- Your expected return is 18\% for Intel and 25% for ATP 0il and Gas. Assume the annual standard deviation of returns is 43% for Intel and 68% for ATP Oil and Gas.
- If the correlation between Intel and ATP is .49, what is the standard deviation of your

- Solution

$$
S \mathrm{D}\left(R_{P}\right)=\sqrt{x_{1}^{2} \operatorname{Var}\left(R_{1}\right)+x_{2}^{2} \operatorname{Var}\left(R_{2}\right)+2 x_{1} x_{2} \operatorname{Cov}\left(R_{1}, R_{2}\right)}
$$

$$
S \mathrm{D}\left(R_{P}\right)=\sqrt{(.4167)^{2}(.43)^{2}+(.5833)^{2}(.68)^{2}+2(.4167)(.5833)(.49)(.43)(.68)}
$$

$$
S \mathrm{D}\left(R_{P}\right)=\sqrt{(.1736)(.1849)+(.3402)(.4624)+2(.4167)(.5833)(.49)(.43)(.68)}
$$

$S \mathrm{D}\left(R_{P}\right)=\sqrt{.0321+.1573+.0696}=\sqrt{0.259}=.5089=50.89 \%$

The Volatility of a Large Portfolio

- The variance of a portfolio is equal to the weighted average covariance of each stock with the portfolio:

$$
\operatorname{Var}\left(R_{P}\right)=\operatorname{Cov}\left(R_{P}, R_{P}\right)=\operatorname{Cov}\left(\sum_{i} x_{i} R_{i}, R_{P}\right)=\sum_{i} x_{i} \operatorname{Cov}\left(R_{i}, R_{P}\right)
$$

- which reduces to:

$$
\begin{aligned}
\operatorname{Var}\left(R_{P}\right) & =\sum_{i} x_{i} \operatorname{Cov}\left(R_{i}, R_{P}\right)=\sum_{i} x_{i} \operatorname{Cov}\left(R_{i}, \sum_{\mathrm{j}} x_{j} R_{j}\right) \\
& =\sum_{i} \sum_{j} x_{i} x_{j} \operatorname{Cov}\left(R_{i}, R_{j}\right)
\end{aligned}
$$

Diversification with an Equally Weighted Portfolio of Many Stocks

- Equally Weighted Portfolio
- A portfolio in which the same amount is invested in each stock
- Variance of an Equally Weighted Portfolio of n Stocks
$\begin{aligned} \operatorname{Var}\left(R_{P}\right)= & \frac{1}{n}(\text { Average Variance of the Individual Stocks) } \\ & +\left(1-\frac{1}{n}\right) \text { (Average Covariance between the Stocks) }\end{aligned}$

Volatility of an Equally Weighted Portfolio Versus the Number of Stocks

The Optimal Portfolio Choice

- By varying the portfolio weights, our portfolio achieves different combinations of risk (standard deviation) and expected return
- The trade-off between risk and expected return is represented by the opportunity/feasible set.
- Consider Intel and Coca Cola:

Portfolio Weights		Expected Return (\%)	Volatility (\%)
\boldsymbol{x}_{1}	\boldsymbol{x}_{C}	$E\left[R_{P}\right]$	$S D\left[R_{p}\right]$
1.00	0.00	26.0	50.0
0.80	0.20	22.0	40.3
0.60	0.40	18.0	31.6
0.40	0.60	14.0	25.0
0.20	0.80	10.0	22.3
0.00	1.00	6.0	25.0

Feasible Set

The effect of Correlation

- Correlation: No effect on portfolio expected return, but on portfolio volatility

Short Sales

Efficient Portfolio with Many Stocks

- Consider adding Bore Industries into the two-stock portfolio:

		Correlation with			
Stock	Expected Return	Volatility	Intel	Coca-Cola	Bore Ind.
Intel	26%	50%	1.0	0.0	0.0
Coca-Cola	6%	25%	0.0	1.0	0.0
Bore Industries	2%	25%	0.0	0.0	1.0

- Is it beneficial to add Bore to the portfolio?

Expected Return and Volatility

Efficient Frontier (3-stock)

Efficient Frontier (IO vs 3-stock)

Risk-Free Saving and Borrowing

- Consider: $\mathrm{x} \%$ in a risky portfolio, $\mathrm{A} ;(\mathrm{I}-\mathrm{x}) \%$ in risk-free Treasury bills
- The exdected return of the dortfolio:

$$
E\left(R_{p}\right)=x \cdot E\left(R_{A}\right)+(1-x) \cdot r_{f}=r_{f}+x \cdot\left(E\left(R_{A}\right)-r_{f}\right)
$$

- The variance of the portfolio:

$$
\sigma_{\rho}=\sqrt{x^{2} \sigma_{A}^{2}+(1-x)^{2} \sigma_{f}^{2}+2 \cdot x(1-x) \sigma_{A, f}}=\sqrt{x^{2} \sigma_{A}^{2}}=x \sigma_{A}
$$

- Linear relationship between the expected return and the SD of the portfolio:

$$
E\left(r_{p}\right)=r_{f}+\left(\frac{E\left(R_{A}\right)-r_{f}}{\sigma_{A}}\right) \sigma_{p}
$$

Efficient Frontier of Risky Investments

Tangent Portfolio

- The portfolio that earns the highest possible expected return for any level of volatility (find the steepest line when combined with the risk-free investments)
- Highest Sharpe ratio (the ratio of reward-to-volatility provided by a portfolio)

$$
\text { Sharpe Ratio }=\frac{\text { Excess Return }}{\text { Standard Deviation }}=\frac{E\left(R_{A}\right)-r_{f}}{\sigma_{A}}
$$

Tangent Portfolio

Tangent Portfolio Implications

- Combinations of the risk-free assets and the tangent portfolio provide the best risk return trade-off (efficient porfolio)
- Every investors should invest in the tangent portfolio, independent of their taste for risk
- An investor's preference will only determine the allocation between tangent portfolio v the risk-free investment
- Aggressive: more in tangent portfolio
- Conservative: less in tangent portfolio

Quick Quiz

- Your uncle asks for investment advice. Currently, he has $\$ 100,000$ invested in portfolio P in the figure "Tangent Portfolio" which has an expected return of 10.5% and a volatility of 8%. Suppose the riskfree rate is 5%, and the tangent portfolio has an expected return of 18.5% and a volatility of 13%. To maximize his expected return without increasing his volatility, which portfolio would you recommend? If your uncle prefers to keep his expected return the same but minimize his risk, which portfolio would you recommend?

Capital Asset Pricing Model

- Assume there is a portfolio of risky securities, p. Can you raise Sharpe ratio by adding more of some investment i to the portfolio?
- Recall that the contribution of investment i to the volatility of the portfolio depends on the risk that i has in common with the portfolio, which is measured by i's volatility x its correlation with p.
$S D\left(R_{p}\right)=\sum_{i} \underbrace{x_{i} \cdot S D\left(R_{i}\right) \cdot \operatorname{Corr}\left(R_{i}, R_{p}\right)}_{\begin{array}{c}\text { Security i's contribution to the } \\ \text { volatility of the portfolio }\end{array}}$

Capital Asset Pricing Model

- If you were to buy more of investment i by borrowing, you would earn the expected return of i minus the risk-free return. Adding i to the portfolio p improves the portfolio's Sharpe ratio if:

Capital Asset Pricing Model

- Define Beta of investment i with respect to portfolio p as:

$$
\beta_{i}^{p}=\frac{S D\left(R_{i}\right) \times \operatorname{Corr}\left(R_{i}, R_{p}\right)}{S D\left(R_{p}\right)}=\frac{\operatorname{Cov}\left(R_{i}, R_{p}\right)}{\operatorname{Var}\left(R_{p}\right)}
$$

- Therefore, the condition can be expressed as:

$$
E\left(R_{i}\right)>r_{f}+\beta_{i}^{p}\left(E\left(R_{p}\right)-r_{f}\right)
$$

Capital Asset Pricing Model

- Higher investment in i will increase the Sharpe ratio of a portfolio p if its expected return $E[R i]$ exceeds the required return ri, defined as:

$$
r_{i} \equiv r_{f}+\beta_{i}^{p}\left(E\left(R_{p}\right)-r_{f}\right)
$$

- $r i$ is the expected return necessary to compensate for the risk investment i contributes to the portfolio
- A portfolio is efficient iff the expected return of every available security equals to its required return.

$$
E\left(R_{i}\right)=r_{i} \equiv r_{f}+\beta_{i}^{\text {eff }}\left(E\left(R_{e f f}\right)-r_{f}\right)
$$

Quick Quiz:

- Assume you own a portfolio of 25 different stocks. You expect your portfolio will have a return of 12% and a standard deviation of I5\%.A colleague suggests you add gold to your portfolio. Gold has an expected return of 8%, a standard deviation of 25%, and a correlation with your portfolio of -0.05 . If the risk-free rate is 2%, will adding gold improve your portfolio's Sharpe ratio?

$$
\begin{aligned}
& \beta_{\text {gold }}=\frac{S D\left(R_{\text {gold }}\right) \times \operatorname{Corr}\left(R_{\text {gold }}, R_{p}\right)}{S D\left(R_{p}\right)}=\frac{25 \% \times-0.05}{15 \%}=-0.0833 \\
& r_{i} \equiv r_{f}+\beta_{\text {gold }}\left(E\left(R_{p}\right)-r_{f}\right)=2 \%-0.0833 \times(12 \%-2 \%)=1.17 \% \%, \\
& \text { auolig goin co your purvollo will micrease دilarpe }
\end{aligned}
$$

CAPM Assumptions

- Investors can buy and sell all securities at competitive market prices (without incurring taxes or transactions costs) and can borrow and lend at the risk-free interest rate.
- Investors hold only efficient portfolios of traded securities portfolios that yield the maximum expected return for a given level of volatility.
- Investors have homogeneous expectations regarding the volatilities, correlations, and expected returns of securities.

Market Equilibrium and The Efficiency of the Market Portfolio

- Given homogenous expectations, all investors will demand the same efficient (tangent) portfolio of risky securities
- If every investors hold the same tangency portfolio of risky assets, the sum of all investors must equal the efficient (tangent) portfolio
- Supply of all risky securities is just the market portfolio

Market Equilibrium and The

 Efficiency of the Market Portfolio- In equilibrium, demand must equal to supply. So, the efficient portfolio coincides with the market portfolio.
- If a security in the market was not part of the efficient portfolio, then no investor would want to own it.
- The security's price would fall, driving its expected return up until it became an attractive investment.

Capital Market Line

- When CAPM assumptions hold, an optimal (efficient) portfolio is a combination of the risk-free investment and the market portfolio
- When the tangent line goes through the market portfolio, it's called the capital market line (CML)

Capital Market Line

The CAPM Equation

- Given an efficient market portfolio, the expected return of an individual security i:
$E\left(R_{i}\right)=r_{i} \equiv r_{f}+\underbrace{\beta_{i}^{m}\left(E\left(R_{m}\right)-r_{f}\right)}_{\text {Risk premium for } i}$
where

$$
\beta_{i}^{m}=\frac{S D\left(R_{i}\right) \times \operatorname{Corr}\left(R_{i}, R_{m}\right)}{S D\left(R_{m}\right)}=\frac{\operatorname{Cov}\left(R_{i}, R_{m}\right)}{\operatorname{Var}\left(R_{m}\right)}
$$

- The risk premium for an individual security i : $r_{\text {Premium }}=\beta_{i}^{m}\left(E\left(R_{m}\right)-r_{f}\right)$

The Security Market Line

- The CAPM Formula:

$$
E\left(R_{i}\right)=r_{f}+\beta_{i}\left(E\left(R_{m}\right)-r_{f}\right)
$$

- Implies a linear relationship between an asset's expected return and its beta
- The plot of this relationship is called the Security Market Line (SML)
- Risk Premium
- Market Price of Systematic Risk: $\left(E\left(R_{m}\right)-r_{f}\right)$
- Quantity of Systematic Risk an asset adds into a well diversified portfolio: β_{i}

Security Market Line

Security Market Line

- The security market line (SML) is the representation of market equilibrium
- The slope of the SML is the reward-torisk ratio: $\left(E\left(R_{M}\right)-R_{f}\right) / \beta_{M}$
- But since the beta for the market is ALWAYS equal to one, the slope can be rewritten
- Slope $=E\left(R_{M}\right)-R_{f}=$ market risk premium

Example: Portfolio Expected Returns and Betas

Reward-to-Risk Ratio: Definition and

Example

- The reward-to-risk ratio is the slope of the line illustrated in the previous example
- Slope $=\left(E\left(R_{A}\right)-R_{f}\right) /\left(\beta_{A}-0\right)$
- Reward-to-risk ratio for previous example $=$

$$
(20-8) /(1.6-0)=7.5
$$

- What if an asset has a reward-to-risk ratio of 8 (implying that the asset plots above the line)?
- What if an asset has a reward-to-risk ratio of 7 (implying that the asset plots below the line)?

Market Equilibrium

- In equilibrium (BIG if), all assets and portfolios must have the same reward-torisk ratio and they all must equal the reward-to-risk ratio for the market

$$
\frac{E\left(R_{A}\right)-R_{f}}{\beta_{A}}=\frac{E\left(R_{M}-R_{f}\right)}{\beta_{M}}
$$

Example - CAPM

- Consider the betas for each of the assets given earlier. If the risk-free rate is 4.5% and the market risk premium is 8.5%, what is the expected return for each?

Security	Beta	Expected Return
DCLK	3.69	$4.5+3.69(8.5)=35.865 \%$
KO	.64	$4.5+.64(8.5)=9.940 \%$
INTC	1.64	$4.5+1.64(8.5)=18.440 \%$
KEI	1.79	$4.5+1.79(8.5)=19.715 \%$

Measuring Systematic Risk

- How do we measure systematic risk?
- We use the beta coefficient to measure systematic risk
- Beta measures a stock's market risk, and shows a stock's volatility relative to the market.
- Indicates how risky a stock is if the stock is held in a well-diversified portfolio.

What does beta tell us?

- A beta of I implies the asset has the same systematic risk as the overall market
- A beta < I implies the asset has less systematic risk than the overall market
- A beta > I implies the asset has more systematic risk than the overall market

Understanding Beta

Source: http:/ / www.investopedia.com/video/

Total versus Systematic Risk

- Consider the following information: Standard Deviation Beta
- Security C
- Security K

20\%
1.25
0.95

- Which security has more total risk? K
- Which security has more systematic risk? C
- Which security should have the higher expected return? C (why?)

Portfolio Beta

- Portfolio Beta is the value-weighted average of the betas of the assets in the portfolio: $\beta_{p}=x_{1} \beta_{1}+x_{2} \beta_{2}+\cdots+x_{n} \beta_{n}$
- Two-asset Example:

$$
\begin{aligned}
\beta_{p} & =\frac{\operatorname{Cov}\left(R_{p}, R_{m}\right)}{\operatorname{Var}\left(R_{m}\right)}=\frac{\operatorname{Cov}\left(x_{1} R_{1}+x_{2} R_{2}, R_{m}\right)}{\operatorname{Var}\left(R_{m}\right)} \\
& =\frac{\operatorname{Cov}\left(x_{1} R_{1}, R_{m}\right)+\operatorname{Cov}\left(x_{2} R_{2}, R_{m}\right)}{\operatorname{Var}\left(R_{m}\right)} \\
& =\frac{x_{1} \operatorname{Cov}\left(R_{1}, R_{m}\right)+x_{2} \operatorname{Cov}\left(R_{2}, R_{m}\right)}{\operatorname{Var}\left(R_{m}\right)} \\
& =\frac{x_{1} \operatorname{Cov}\left(R_{1}, R_{m}\right)}{\operatorname{Var}\left(R_{m}\right)}+\frac{x_{2} \operatorname{Cov}\left(R_{2}, R_{m}\right)}{\operatorname{Var}\left(R_{m}\right)}=x_{1} \beta_{1}+x_{2} \beta_{2}
\end{aligned}
$$

Example: Portfolio Betas

- Consider the previous example with the following four securities
- Security
Weight
Beta
- DCLK
. 133
3.69
- KO
- INTC
- KEI
. 2
0.64
.267
1.64
. 4
1.79
- What is the portfolio beta?
- . $133(3.69)+.2(.64)+.267(1.64)+.4(1.79)=$ I. 77

Capital Market Line

Security Market Line

CML

Apply to efficient portfolio only. No Individual Security will lie on the CML
Plot risk premium (Efficient Portfolio) and portfolio standard deviation

Use standard deviation as a measure of risk for efficient portfolio

Illustrate the total risk (systematic and unsystematic)

SML

Apply to both Efficient Portfolios and Individual Stocks lie on SML
Plot risk premium (Individual asset) on the asset's systematic risk

Use beta, the contribution of the asset to the portfolio variance, as the measure of risk for individual assets held as part of a well-diversified portfolio
Illustrate systematic risk only

- How do you compute the expected return and standard deviation for an individual asset? For a portfolio?
- What is the difference between systematic and unsystematic risk?
-What type of risk is relevant for determining the expected return?

End of Lesson

