## Capital Budgeting

## Chapter Outline

- Capital Budgeting
- The Payback Rule
- The Discounted Payback
- Net Present Value
- The Internal Rate of Return
- Profitability Index
- The Practice of Capital Budgeting


## What is capital budgeting?

- Analysis of potential additions to fixed assets.
- Long-term decisions; involve large expenditures.
- Very important to firm's future.


## Steps to capital budgeting

I. Estimate CFs (inflows \& outflows).
2. Assess riskiness of CFs.
3. Determine the appropriate cost of capital.
4. Evaluate projects
5. Accept/Reject decision

## Estimate Cash Flows

- The cash flows that should be included in a capital budgeting analysis are those that will only occur if the project is accepted
- These cash flows are called incremental cash flows


## Asking the Right Question

- You should always ask yourself "Will this cash flow occur ONLY if we accept the project?"
- If the answer is "yes", it should be included in the analysis because it is incremental
- If the answer is "no", it should not be included in the analysis because it will occur anyway
- If the answer is "part of $i t$ ", then we should include the part that occurs because of the project

What is the difference between independent and mutually exclusive projects?

- Independent projects - if the cash flows of one are unaffected by the acceptance of the other.
- Mutually exclusive projects - if the cash flows of one can be adversely impacted by the acceptance of the other.


## Payback period

- The number of years required to recover a project's initial cost back, or "How long does it take to get our money back?"
- Calculated by adding project's cash inflows to its cost until the cumulative cash flow for the project turns positive.
- Decision Criteria:
- Independent projects: accept if the payback period is less than some preset limit
- Mutually exclusive projects:Among those that are less than the preset limit, choose the minimum.


## Calculating payback period



## Computing Payback For The Project

- Assume we will accept the project if it pays back within two years. Do we accept or reject the projects?
- Now, suppose the discount rate is $20 \%$, what are the NPV for project $L$ and $S$, respectively? $\left(N P V_{\mathrm{L}}=0.2 ; \mathrm{NPV}_{\mathrm{s}}=-5.4\right)$


## Strengths and weaknesses of payback

- Strengths
- Provides an indication of a project's risk and liquidity.
- Easy to calculate and understand.
- Weaknesses
- Ignores the time value of money.
- Requires an arbitrary cutoff point
- Ignores CFs occurring after the payback period.


## Discounted Payback Period

- Compute the present value of each cash flow and then determine how long it takes to payback on a discounted basis
- Compare to a specified required period
- Decision Criteria:
- Independent projects: accept if the payback period (discounted basis) is less than some preset limit
- Mutually exclusive projects:Among those that are less than the preset limit, choose the minimum.


## Discounted payback period

- Uses discounted cash flows rather than raw CFs. Assume we will accept the project if it pays back on a discounted basis in 2 years. Do we accept or reject the project?
$\mathrm{CF}_{\mathrm{t}}$
PV of $\mathrm{CF}_{\mathrm{t}}$
Cumulative


Disc Payback $_{L}=2+41.32 / 60.11=2.7$ years

## Net Present Value (NPV)

- The difference between the market value of a project and its cost.
- Sum of the PVs of all cash inflows and outflows of a project:

$$
\mathrm{NPV}=\sum_{\mathrm{t}=0}^{\mathrm{n}} \frac{\mathrm{CF}_{\mathrm{t}}}{(1+\mathrm{k})^{\mathrm{t}}}
$$

## Net Present Value (NPV)

- How much value is created from undertaking an investment?
- The first step is to estimate the expected future cash flows.
- The second step is to estimate the required return for projects of this risk level.
- The third step is to find the present value of the cash flows and subtract the initial investment.


## NPV - Decision Rule

- A positive NPV means that the project is expected to add value to the firm and will therefore increase the wealth of the owners.
- Since our goal is to increase owner wealth, NPV is a direct measure of how well this project will meet our goal.
- Decision criteria:
- Independent projects: accept iff NPV>0
- Mutually exclusive projects: accept the project with the highest NPV among those with NPV>0


## NPV Decision Rule: Example

- You are looking at a new project and you have estimated the following cash flows:
- Year 0: CF = - 165,000
- Year I: CF $=63,120 ; \mathrm{NI}=13,620$
- Year 2: $\mathrm{CF}=70,800 ; \mathrm{NI}=3,300$
- Year 3: CF $=91,080 ; \mathrm{NI}=29,100$
- Average Book Value = 72,000
- Your required return for assets of this risk is $12 \%$.


## NPV Decision Rule (Con't)

- Using the calculator:

$$
\begin{aligned}
& \circ \mathrm{CF}_{0}=-\mathrm{I} 65,000 ; \mathrm{COI}=63, \mathrm{I} 20 ; \mathrm{FOI}=\mathrm{I} ; \mathrm{CO}= \\
& 70,800 ; \mathrm{FO2}=\mathrm{I} ; \mathrm{C} 03=91,080 ; \mathrm{FO3}=\mathrm{I} ; \mathrm{NPV} ; \mathrm{I} \\
& =\mathrm{I} ; \mathrm{CPT} \text { NPV }=12,627.42
\end{aligned}
$$

- Do we accept or reject the project?


## Internal Rate of Return (IRR)

- IRR is the discount rate that forces PV of inflows equal to cost, and the NPV $=0$ :

$$
0=\sum_{t=0}^{n} \frac{C F_{t}}{(1+\operatorname{IRR})^{t}}
$$

- Decision criteria:
- Independent projects: accept a project if IRR > some fixed IRR*, the opportunity cost of capital
- Mutually exclusive projects: accept the highest IRR among projects with IRR > IRR*
- If IRR $>k$, the project's rate of return is greater than its costs. There is some return left over to increase stockholders' returns.


## Internal Rate of Return (Con't)

- This is the most important alternative to NPV
- It is often used in practice and is intuitively appealing
- It is based entirely on the estimated cash flows and is independent of interest rates found elsewhere


## Reinvestment rate assumptions

- NPV method assumes CFs are reinvested at k , the opportunity cost of capital.
- IRR method assumes CFs are reinvested at IRR.
- Assuming CFs are reinvested at the opportunity cost of capital is more realistic, so NPV method is the best. NPV method should be used to choose between mutually exclusive projects.


## IRR: Example I

- You invest in a 2-year project with annual cash flow of $\$ 50$ and a face amount of $\$ 1,000$. You pay $\$ 990$ for the bond. What is the IRR for the bond?
$0=-990+\frac{50}{(1+r)}+\frac{1050}{(1+r)^{2}}$
- Solving the quadratic equation, $r=5.54 \%$


## IRR: Example 2

|  | $C_{0}$ | $C_{1}$ | $C_{2}$ | $C_{3}$ | $C_{4}$ | $C_{5}$ | $C_{6}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Project 1 | $-100,000$ | 20,000 | 40,000 | 30,000 | 10,000 | 40,000 | 60,000 |
| Project 2 | $-100,000$ | 10,000 | 10,000 | 80,000 | 5,000 | 10,000 | 10,000 |

$I_{R} \mathbb{I}_{1}=2 I \%, \operatorname{IRR}_{2}=7 \%$ Suppose the cost of capital is IRR*= $10 \%$. Do the IRR and NPV decision rules

## agree?



- Used properly, no need to know the cost of capital when comparing projects
- Project I: NPV>0 when cost of capital, r < 21\%


## When do NPV and IRR Agree?

- There is only one cash outflow at time 0 and all other cash flows are positive (conventional cash flows)
- Only one project is under consideration (not mutually-exclusive projects)
- The opportunity cost of capital is the same for all periods


## Conflicts Between NPV and IRR

- NPV directly measures the increase in value to the firm
- Whenever there is a conflict between NPV and another decision rule, you should always use NPV
- IRR is unreliable


## Example: IRR and Mutually Exclusive Projects

| Period | Project A | Project B |
| :--- | :---: | :---: |
| 0 | -500 | -400 |
| 1 | 325 | 325 |
| 2 | 325 | 200 |
| IRR | $19.43 \%$ | $22.17 \%$ |
| NPV | 64.05 | 60.74 |

The required return for both projects is $10 \%$.

What are the IRR and NPV for both projects?

Which project should you accept and why?

## Problems with IRR

- Projects of the loan type
- Multiple IRRs
- Project ranking for mutually exclusive projects
- Project with different time patterns of cash flows
- IRR ignores the term structure of interest rate


## (I) Projects of the loan type

|  | $C_{0}$ | $C_{1}$ | $\mathrm{NPV}(\mathrm{r}=10 \%)$ | IRR |
| :--- | :---: | :---: | :---: | :---: |
| Project 1 | $-100,000$ | 120,000 | 9,091 | $20 \%$ |
| Project 2 | 100,000 | $-120,000$ | $-9,091$ | $20 \%$ |



- NPV as a function of cost of capital


## (2) Multiple IRRs

|  | $C_{0}$ | $C_{1}$ | $C_{2}$ |
| :---: | :---: | :---: | :---: |
| Project 1 | -100 | 230 | -132 |

- The project has two IRRs: I $0 \%$ and $20 \%$. The IRR is indecisive.
- Multiple IRRs
 exist when the sequence of CFs change signs more than once.


## (2) Multiple IRRs (Con't)

- The modified IRR method deals with the problem by combining CFs until only one change in sign remains.
- Using $r=15 \%$, the value of the last CF is II4.78@T=I and the adjusted CF @ T=I is 230 - II4.78 = II5.22
- By discounting and combining cash flows, we have only one change in sign: (-I00, II5.22)
- Applying the IRR rule gives $\operatorname{IRR}=15.22$, which is larger than the cost of capital (I5\%).Accept the project.


# (3) Project ranking for mutually exclusive projects 

|  | $C_{0}$ | $C_{1}$ | IRR | NPV at $10 \%$ |
| :--- | :---: | :---: | :---: | :---: |
| Project A | $-10,000$ | 20,000 | $100 \%$ | $8,181.82$ |
| Project B | $-20,000$ | 36,000 | $80 \%$ | $12,727.27$ |
| B-A | $-10,000$ | 16,000 | $60 \%$ | $4,545.45$ |

- Accept A using IRR but B using NPV
- Solution to the scale problem is to use incremental CF.
- Is taking B better than A? Require more outlay today ( $\$ 10,000$ ), but create more CF in I year (\$16,000).
- Accept B if IRR of incremental investment is larger than the cost of capital, or equivalently the incremental NPV is positive.


## (4) Projects with Different CF Patterns

- Among mutually exclusive projects with the same scale, but different time patterns of CFs, IRR favors projects that deliver CFs faster.

|  | $C_{0}$ | $C_{1}$ | $C_{2}$ | $C_{3}$ | $C_{4}$ | $C_{5}$ | ETC | IRR | NPV at $10 \%$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | $-9,000$ | 6,000 | 5,000 | 4,000 | 0 | 0 | $\cdots$ | $33 \%$ | 3,592 |
| D | $-9,000$ | 1,800 | 1,800 | 1,800 | 1,800 | 1,800 | $\cdots$ | $20 \%$ | 9,000 |

Net present value, dollars


## (4) Projects with Different CF Patterns

- As with the scale problem, we can also fix this timing problem by looking at the incremental cash flows.

|  | $C_{0}$ | $C_{1}$ | $C_{2}$ | $C_{3}$ | $C_{4}$ | $C_{5}$ | ETC | IRR | NPV $(10 \%)$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C | $-9,000$ | 6,000 | 5,000 | 4,000 | 0 | 0 | $\cdots$ | $33 \%$ | 3,592 |
| D | $-9,000$ | 1,800 | 1,800 | 1,800 | 1,800 | 1,800 | $\cdots$ | $20 \%$ | 9,000 |
| D-C | 0 | $-4,200$ | $-3,200$ | $-2,200$ | 1,800 | 1,800 | $\ldots$ | $15.6 \%$ | 5,408 |

- This problem also exists when projects have the same horizon, but generate cash flows at different speeds.

|  | $C_{0}$ | $C_{1}$ | $C_{2}$ | IRR | NPN at $10 \%$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Project C | -100 | 115 | 10 | $23 \%$ | 12.81 |
| Project D | -100 | 10 | 130 | $19 \%$ | 16.53 |
| $D-C$ | 0 | -105 | 120 | $14 \%$ | 3.72 |

## (5) IRR Ignores Term Structure of

 Interest Rates- When we compute an IRR we get just one number. However, interest rates may not be constant over time.
- If the interest rate varies over different horizons then which hurdle rate should we compare our IRR to?
- Need to compute NPV: discount cash flows at different dates with the corresponding interest rates.


## Quick Quiz

- Consider an investment that costs $\$ 100,000$ and has a cash inflow of $\$ 25,000$ every year for 5 years. The required return is $9 \%$, and required payback is 4 years.
- What is the payback period? (4 years)
- What is the discounted payback period?
- What is the NPV? $(-2,758.72)$
- What is the IRR? (7.93\%)
- Should we accept the project?
- What decision rule should be the primary decision method?
- When is the IRR rule unreliable?


## Profitability Index (PI)

- Profitability index is the ratio of the present value of future cash flows and the initial cost of a project: $\mathrm{PI}=\frac{\mathrm{PV}}{-\mathrm{C}_{0}}=\frac{\mathrm{PV}}{1_{0}}$
- Decision criteria:
- Independent project:Accept all projects with PI > I. Note: Identical to the NPV rule.
- Mutually exclusive project:Among projects with $\mathrm{PI}>\mathrm{I}$, accept the highest Pl .
- Useful supplement to NPV in cases with resource constraints


## Profitability Index (Con't)

- To invest in all NPV>0 projects, firm must be able to raise unlimited capital at cost of capital, $r$, by issuing securities.
- Sometimes, firms may be rationed with limited capital to invest. How do we maximize the NPV of the set of projects you choose?
- The PI helps to solve this problem. Rationed NPV is maximized by choosing:
- Projects with the highest PI that is $>\mathrm{I}$.
- Use up the capital budget


## Example: PI and Capital rationing

- As an entrepreneur you have $\$ 1,000,000$ in available venture capital. You cannot raise more capital. You can choose to take on any combination of the following projects:

| Project | Cost | PV(Future CFs) | NPV | PI |
| :---: | :---: | :---: | :---: | :---: |
| A | 200,000 | 300,000 | 100,000 | 1.50 |
| B | 500,000 | 620,000 | 120,000 | 1.24 |
| C | 400,000 | 700,000 | 300,000 | 1.75 |
| D | 200,000 | 275,000 | 75,000 | 1.38 |
| E | 100,000 | 130,000 | 30,000 | 1.30 |
| F | 100,000 | 140,000 | 40,000 | 1.40 |

- Which should you take? First, rank the projects by $\mathrm{PI}: \mathrm{C}>\mathrm{A}>\mathrm{F}>\mathrm{D}>\mathrm{E}>\mathrm{B}$. Then, choose projects in this order till you use up the capital.


## Example (Con't)

- In descending order of PI:

| C | Costs | 400,000 |
| :--- | :---: | :---: |
| $\mathrm{C}+\mathrm{A}$ | Costs | 600,000 |
| $\mathrm{C}+\mathrm{A}+\mathrm{F}$ | Costs | 700,000 |
| $\mathrm{C}+\mathrm{A}+\mathrm{F}+\mathrm{D}$ | Costs | 900,000 |
| $\mathrm{C}+\mathrm{A}+\mathrm{F}+\mathrm{D}+\mathrm{E}$ | Costs | $1,000,000$ |

- So, you should take all projects, except B.
- Total NPV is $\$ 545 \mathrm{~K}$
- Give up B (\$120K) - if you can raise more capital, you can add another $\$ 120 \mathrm{~K}$ firm value
- Note: if the initial outlays of chosen projects fall short of the budget, you need to consider all feasible combinations of projects within the budget and to pick the combination with highest NPV.


## Capital Budgeting in Practice

| Technique | \% Always or Almost Always |
| :--- | :--- |
| IRR | 75.61 |
| NPV | 74.93 |
| Payback Period | 56.74 |
| Discounted Payback Period | 29.45 |
| Profitability Index | 11.87 |

The Theory and Practice of Corporate Finance: Evidence From the Field" in Journal of Financial Economics (2001), by John Graham \& Campbell Harvey

- They conducted a survey of 392 CFOs.
- Included in the survey they asked: What technique do you use to evaluate investment projects?


## Capital Budgeting in Practice (Con't)

- Graham \& Harvey (200I) found that NPV and IRR are relatively more popular in firms that are:
- Larger.
- With high leverage.
- Paying dividends.
- Public companies.
- Firms with foreign sales.
- Firms whose the CEO has an MBA.
- Firms in the Fortune 500.
- Overall, it seems that NPV is more popular among large, well established firms.


## Capital Budgeting in Practice (Con't)

- Payback period is relatively more popular for:
- Smaller firms
- Firms whose management owns a large share of the firm
- Private firms
- Firms whose CEO is younger than 59
- Overall, payback period seems to be used by small and less established firms


## Lesson Summary

- Independent vs. Mutually-exclusive Projects
- Payback Period
- Discounted Payback Period
- NPV
- Internal Rate of Return (IRR)
- Issues with IRR
- Useful to evaluate estimation error
- Profitability Index (PI)
- Same as NPV for independent projects
- Useful to maximize NPV from a set of projects with resource constraints


## End of Lesson

